CARB LIGHT-DUTY OBD REGULATION UPDATE

Mike Regenfuss, Chief Engineering Studies Branch California Air Resources Board

Overview

Background

Recent Changes
Upcoming Issues
Recent In-Use Issues

Background

- Over 20 years since first systems introduced
- Dominant technology used by IM programs
 - Identify vehicles in need of repair
 - Facilitate quick and accurate inspection
 - Facilitate effective repairs
- Only standard that directly addresses emissions beyond useful life

Primary OBD Target

2012 Inspection Data from California Smog Check Program

Significant Activity Leading up to Inspection

Estimated Actual Fail Rates

Background Recent Changes Upcoming Issues Recent In-Use Issues

Management and Personnel Changes

Document Management System

What is it?

- Essentially, electronic submission of application
- Structured order and file naming of portions of the application

Status:

All manufacturers now submitting applications via DMS

Remaining Issues:

- More scrutiny on file naming/structure of application
 - Quicker ability to recognize and reject incomplete applications
- Submittal of 'post-' certification documents not always being done
 - Production Vehicle Evaluation (PVE) data
 - CAL ID/CVN tables
 - Quarterly deficiency payment submittal letters
 - Running changes

Certification Timing

DMS

- Allows better tracking of total volume and timing of pending workload
- Adhering to structure and naming conventions facilitates certification
- Quick identification of missing parts and earlier feedback

Timing and Priority Factors:

- First in, first out
- Manufacturers' deadlines and priorities
- ARB target: within 90 days after submission of complete application
 - ARB will respond within 30 days if parts of application are missing (i.e., what should be in DMS)
 - Demonstration data may be submitted later but with adequate review time
 - Manufacturers should plan for 90 day review

Background
Recent Changes

Upcoming Issues
Recent In-Use Issues

Future Regulatory Updates

Light-duty (OBD II) overdue for an update

- 2006 was last update dedicated to light-duty changes
- HD + LD certification still consuming majority of available resources

Status:

- Plan to begin a rulemaking in 2014 calendar year
- If needed, could pursue inserting minor model year critical changes into a tailpipe regulatory update in 2014

General areas of update:

- Normal 'clean-up' items
- Changes to match LEV III
- Added direction on hybrid system monitoring
- First steps on OBD role in greenhouse gas (GHG) emissions?

Likely Areas of Changes

LEV III related changes:

- OBD threshold based on HC+NOx standard and new categories (e.g.., ULEV50)
- Direct Ozone Reduction (DOR) threshold change

Hybrid changes:

- Powertrain and OBD system boundary definitions
- Further clarity on HVAC interaction (battery cooling, intrusive IC engine operation for cabin heat, etc.)
- Misfire detection logic changes (in lieu of 4x1000 rev fails to set a fault)

GHG interaction:

- Inclusion of powertrain GHG emission reduction components/strategies?
 - Functional vs. emission threshold monitors
 - Big impacts vs. all measurable impacts
 - Likely first affected systems include stop/start technologies and regenerative braking

LEV III Gasoline Thresholds

	E	missio	n Std		OBD Thresholds							Catalyst Threshold					
Emisssion Std	HC+NOx	НС	NOx	СО	HC+NOx Multiplier	HC+NOx THD	HC Multiplier	HC THD	NOx Multiplier	NOx THD	Compared HC+NOx THD	Multiplier	HC+NO x	HC Multiplier	НС	NOx Multiplier	NOx
LEV 160 (LEVII)	0.160	(0.090)	(0.070)	4.2	1.5	0.240	-	-	-	-	0.240	1.75	0.280	-	-	-	-
ULEV 125 (ULEVII)	0.125	(0.055)	(0.070)	2.1		0.188	-	-		-	0.188		0.219	-	-	-	-
Bin 4	-	0.070	0.040	2.1	-	-		0.105	2.5	0.10	0.205	-	-	1.75	0.123		0.100
Bin 3	-	0.055	0.030	2.1		-	1.5	0.083		0.07 5	0.158		-		0.096	2.5	0.075
ULEV 70	0.070	-	-	1.7	2.0	0.140	-	-	-	-	0.140	2.0	0.140	-	-	-	-
ULEV 50	0.050	-	-	1.7		0.100	-	-		-	0.100		0.100	-	-	-	-
SULEV30 (SULEVII)	0.030	(0.010)	(0.020)	1.0	2.5	0.075	-	-	-	-	0.075	2.5	0.075	-	-	-	-
SULEV20	0.020	-	-	1.0		0.050	-	-		-	0.050		0.050	-	-	-	-

•Same as presented by Mike McCarthy at 2012 SAE OBD events.

Standardization Updates

Connector (J1962):

- Updated J1962 with more restrictive orientation and access
- Likely will prohibit any form of cover/access panel in regulation

Data (J1979) - a few additions/refinements:

- For PHEVs, tracking of 'plug-in' (~charge depleting) vs IC engine (~charge sustaining) usage
 - Ideas: cumulative miles, maybe cumulative energy usage (kWh or gal.)
 - Uses: Inform future policy decisions on ZEV credits, inventory, usage habits over full useful life
- For all HEVs, more consistent battery pack state of charge (SOC) reporting including flag to indicate charge-sustaining or charge-depleting mode of operation
- For all vehicles, some metric(s) of fuel economy:
 - Likely will need to binned/normalized in some manner
 - Lifetime, instantaneous, and something in between
 - Uses: Inform future policy, test cycle versus in-use comparisons, off-cycle GHG credits, degradation over full useful life

Background
Recent Changes
Upcoming Issues
Recent In-Use Issues

Analysis of Inspection/Maintenance Data

Permanent DTCs (PDTC):

- Oregon is first state collecting (not yet using) the data
- Good news
 - Predominantly working as expected
 - Clear examples of where it is a refinement to readiness criteria

Year	Make	Model	Test#	Test result	MIL status	Readiness		\$ 03 DTC	PDTC	Miles SCC	W/Ups SCC	Miles w/MIL
2012	vw	Jetta	1	Not-Ready	Pass	CCCCUNNUCCC			P2279	19.375	0	0
			2	Not-Ready	Pass	CCCCUNNUCCC			P2279	33.75	0	0
			3	Fail	Fail	CCCCUNNUCCC		P2279	P2279	45.625	0	11.25
2010	vw	Jetta	1	Fail	Fail	CCCCUNCUCCC		P2404	P2404	147.5	9	24
			3	Pass	Pass	CCCCUNCUCCC			P2404	50	2	0
2010	BMW	X5	4	Not-Ready	Pass	CNCNNUCUNNN			P2201	20	2	0
			5	Not-Ready	Pass	CNCNNUCUNNN			P2201	15	2	0
			6	Not-Ready	Pass	CNCNNUCUCNN			P2201	34.375	2	0
2010	BMW	X5	4 5	Not-Ready Not-Ready	Pass Pass	CNCNNUCUNNN			P2201 P2201	20	2 2	

Analysis of Inspection/Maintenance Data

Permanent DTCs:

- Not so good news
 - Some issues/anomalies discovered

Issue #1:

- Same PDTC often showing up for a particular year/make/model
- "Mileage since codes cleared" PID equaled odometer reading on vehicles
- Root cause: Fault set on assembly line before final learning done and code clear logic didn't work right

Issue #2:

- Several miscellaneous cases being investigated where PDTC is stored and mileage since code clear is very high (e.g., > 4,000 miles & >255 warm-ups)
- Root cause(s) (TBD): Possibilities include hard to run monitors, inappropriate use of similar conditions to clear permanent DTC, improper clear logic

Additional Issues: Non-Emission Related Fault Interaction with OBD

• Issue #1:

I/M data revealed some non-MIL, non-emission DTCs reported in Mode \$03

Root Cause:

- Manufacturer mapped many non-MIL powertrain faults to report as emission-related to make the codes accessible to generic scan tool
- Downside in I/M, techs pursue repair of all Mode \$03 faults to get a MIL off
- Increased cost of repairs for no emission benefit

• Issue #2:

 Testing by ARB staff and manufacturers revealed major monitors disabled without a MIL or emission-related fault

Root Cause:

- Internal software flag(s) were incorrectly mapped to disable OBD monitors
- "Extra" fault paths were not properly turned off in software and could cause disablement
- Default strategies (e.g., back up signals) were not implemented correctly

Contact Info

Official CARB documents available from

www.arb.ca.gov

Direct link to OBD page:

http://www.arb.ca.gov/msprog/obdprog/obdprog.htm

Mike Regenfuss

Chief, Engineering Studies Branch Mobile Source Control Division <u>mregenfu@arb.ca.gov</u> (626) 575-7004